Phospholipid hydroxyalkenals, a subset of recently discovered endogenous CD36 ligands, spontaneously generate novel furan-containing phospholipids lacking CD36 binding activity in vivo.
نویسندگان
چکیده
We recently identified a novel family of oxidized choline glycerophospholipid (oxPC) molecular species enriched in atheroma that serve as endogenous ligands for the scavenger receptor CD36 (oxPC(CD36)), facilitating macrophage cholesterol accumulation and foam cell formation (Podrez, E. A., Poliakov, E., Shen, Z., et al. (2002) J. Biol. Chem. 277, 38517-38523). A high affinity CD36 recognition motif was defined within oxPC(CD36), an oxidatively truncated sn-2 acyl group with a terminal gamma-hydroxy (or oxo)-alpha,beta-unsaturated carbonyl. The fate of these species once formed in vivo is unknown. Here we show that a subset of oxPC(CD36), a phosphatidylcholine molecular species possessing sn-2 esterified fatty acyl hydroxyalkenal groups, can undergo a slow intramolecular cyclization and dehydration reaction to form novel oxPC species possessing a sn-2 acyl group that incorporates a terminal furyl moiety (oxPC-furan). Using high performance liquid chromatography with on-line tandem mass spectrometry in combination with unambiguous organic synthesis, we confirm that oxPC-furans, ultimately derived from phospholipids with sn-2 esterified docosahexaenoic, arachidonic, or linoleic acids, are formed during exposure of model membranes and isolated lipoproteins to physiological oxidant systems. In vivo generation of oxPC-furans at sites of enhanced oxidant stress is also demonstrated, such as within brain tissues following cerebral ischemia. Cell binding studies reveal that in contrast to their oxPC(CD36) precursors, oxPC-furans lack CD36 binding activity. Taken together, the present studies identify oxPC-furans as a novel family of oxidized phospholipids that are formed in vivo from phospholipid hydroxyalkenals but that lack CD36 binding activity.
منابع مشابه
Phosphatidylserine receptors: role of CD36 in binding of anionic phospholipid vesicles to monocytic cells.
Exposure of phosphatidylserine (PtdSer) has been implicated in the recognition and phagocytosis of senescent and apoptotic cells, and CD36 has been proposed as one receptor protein that recognizes PtdSer and other anionic phospholipids. We investigated the binding of phospholipid vesicles to the monocytic leukemia cell lines THP-1 and J774A.1 with a flow cytometric assay; vesicles contained 50 ...
متن کاملIdentification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36.
The macrophage scavenger receptor CD36 plays an important role in the uptake of oxidized forms of low density lipoprotein (LDL) and contributes to lesion development in murine models of atherosclerosis. However, the structural basis of CD36 lipoprotein ligand recognition is unknown. We now identify a novel class of oxidized phospholipids that serve as high affinity ligands for CD36 and mediate ...
متن کاملOxidized phospholipids as endogenous pattern recognition ligands in innate immunity.
One of the major functions of the innate immune system is the surveillance of host tissues, identifying apoptotic and senescent cells for engulfment and orderly removal by macrophages (1,2). Macrophage recognition of modified lipoproteins occurs via similar pathways of the innate immune system, involving shared scavenger receptors and molecular pattern recognition ligands (3-6). These critical ...
متن کاملPhosphocholine as a pattern recognition ligand for CD36.
We have previously shown that CD36 recognizes oxidation products of phospholipids on oxidized LDL (OxLDL) such as 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC). The current study was designed to examine whether the phosphocholine (PC) headgroup in POVPC constitutes an obligatory binding target for CD36. To examine the contribution of PC in the binding of POVPC to CD36, we u...
متن کاملCompare the Effect of Eicosapentaenoic Acid and Oxidized Low-Density Lipoprotein on the Expression of CD36 and Peroxisome Proliferator-Activated Receptor Gamma
Background: There is evidence that CD36 promotes foam cell formation through internalizing oxidized LDL (ox-LDL) into macrophages therefore, it plays a key role in pathogenesis of atherosclerosis. In addition, CD36 expression seems to be mediated by nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of the present study was to evaluate and compare the effect of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 281 42 شماره
صفحات -
تاریخ انتشار 2006